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Introduction
• It is believed that the fundamental building blocks of matter are quarks bound 

together by gluons, via the strong nuclear force. 

• Quantum Chromodynamics (QCD) is the theory which describes the strong 
interactions

• Understanding how QCD makes up matter and how quarks and gluons behave is 
a subject of intense experimental scrutiny
- only ~5% of the mass of a proton comes from mass of the quarks, rest comes from binding

- gluon self-coupling and gluon excitations can create exotic forms of matter 

meson: 2 quarks baryon: 3 
quarks

glueball: 0 
quarks 

only gluons GlueX in the new Hall-D 
of Jefferson Lab@12 GeV.

Hunting for exotics!

Jefferson Lab Brookhaven National Lab
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Important questions in Nuclear Physics
• What observable states does QCD allow? 
- what is the role of the gluons?
- what about exotic matter?

• How does QCD make protons, neutrons?
- what are the distribution of quarks, gluons, etc in a proton or neutron ?

• QCD must predict properties of light nuclei
- how to make helium, tritium etc

• How does QCD behave under extreme temperatures & pressures 
such as in supernovae or shortly after the Big-Bang. 

Hägler, Musch, Negele, Schäfer, EPL 88 61001



Thomas Jefferson National Accelerator Facility

QCD: Path Integral Formulation
• Quarks and Gluons are ‘fields’ in space-time 

(Minkowski Space)

• QCD Is defined by the Action (S) over the 
fields

• Action enumerates potential interactions
- quark-gluon, gluon-gluon etc.

• Observables can be computed through 
Path Integrals over the fields.

• Running Coupling (Asymptotic Freedom)
- Large energies => Perturbation Theory

- Low energy => Nonperturbative Method needed. 

Expectation value of an  
observable (correlation function)

“Functional Integral” over all the possible states of the 
fields

Value of observable on a 
concrete set of fields

The “action” defining the theory

quark

gluon

3  gluon

4  gluon

quark
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Lattice QCD
• Replace “continuum” space time by 4D Lattice
- 3D spatial box (finite volume)

- Euclidean Time ( t => it ) Lt is proportional to 1/Temperature

• Discretize quark fields onto lattice sites

• Discretize gluon fields onto lattice links as SU(3) matrices

- 3x3 matrices on links act as “parallel transporters” along links

• Finite differences for derivatives

• Functional integrals become ‘regular’ integrals

• QCD is continuum limit of LQCD (RG)

• LQCD is not a ``model’’: Fully renormalizable QFT!!!

Uµ(x) = exp

(
ig

Z x+µ̂

x
dx Aµ(x)

)
⇡ exp {ig a Aµ(x)} a



Thomas Jefferson National Accelerator Facility

What are our observables?
• Lattice QCD Observables are “correlation functions”

• E.g. For mesons (quark-antiquark pairings):

• G is the quark propagator defined as:

• M is the Fermion matrix

• Computing C(t) involves solving linear systems for G 
(Solvers) and contractions (few index)

Meson: e.g.   
 the π meson 
 (a.k.a pion)

Baryon: e.g.  
proton or 
neutron

Meson to 2 
meson decay: 
e.g. ρ → 2π

2 meson in to  
2 meson out: 
e.g. 2π → 2π

G

 G†contraction 
of free indices

O1 O2

C(~p, t) =
X

e
i~p.~x Tr {O1 G

†
1 O2 G2} =

X
Ai e

�
p

E2
i +|~p|2t ���!

t!1
A0 e

�
p

m2+|~p2|t
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The name of the game:
• Produce Ensembles of Configurations

- Several box-sizes for finite V behavior 

• E.g. Luscher formalism for phase shifts, resonances etc.

• Several Temperatures (in Finite temperature calculations)

- Several lattice spacings ‘a’ (to allow for continuum limit extraction)

- As high statistics as possible (sample path integral well)

• Want to minimize time for sample generation, minimize autocorrelation time (algorithms)

• Evaluate Correlation Functions
- Need O(100,000)-O(1M) quark propagators per configuration (reduce signal to noise)

• Want the fastest possible multi-RHS linear solvers

- Can have O(10,000)-O(100,000) quark line diagrams for some observables

• Want to eliminate as many diagrams as possible using symmetry 

• Want fast I/O for database accesses

• Want to maximize common by-product reuse

• Want automation & job orchestration: Workflows!!!!

• Want to run on any hardware that falls into our lap:   Performance portability Strategy
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Anatomy of an LQCD calculation

• Gauge Generation: create snapshots of the LQCD Vacuum
- sequential (Markov Chain) but has data parallelism from the lattice

- strong scaling limited: needs leadership computing resources 

• Measurement:
- computes propagation of quarks on the gauge field snapshots

- contracts propagators into correlation functions

- throughput limited: very cost effective on clusters like at JLab or ensemble mode running at LCFs

Gauge Generation: {U} Measurement: O(U) Fitting Physics 
Result

Gauge Configurations Propagators, Correlation Functions

Titan Image Courtecy of OLCF 
Edison Image Courtesy of NERSC
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Importance Sampling
• Pick Configuration ‘U’ with probability P(U) 

• Ensemble average then becomes a ‘regular average’  

• E.g.: Metropolis Algorithm 
- Start from some initial configuration U 

- Pick trial config U’ from U reversibly: i.e. Pc(U→U’)=Pc(U’→U) 

- Accept with Metropolis probability 

- If we reject, next config is U again
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Hybrid Monte Carlo
• Big Trick: Update all links at once using Molecular Dynamics
- Treat each link as ‘canonical coordinate’

- Assign to each link a ‘canonical momntum’ in the lie algebra su(3)

• Construct a fictitious Hamiltonian

• Simulate Hamiltonian System with partition function:

• Momenta have gaussian distribution: easy to generate from heatbath

• Keep the Marginal Distribution of the gauge fields (ignore momenta)
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Hybrid Monte Carlo (HMC)
1. Refresh momenta from Gaussian Heatbath

- generate (U,p) from (U,pold)
2. Compute H = H(U,p)
3. Perform Molecular Dynamics trajectory

- generate (U’,p’)

- MD must be reversible and ‘area/measure preserving’

• To Guarantee Detailed Balance
4. Compute H’ = H(U’,p’)
5. Accept with Metropolis probability

6. If (U’,p’) is rejected, the new state is (U,p)

Hypersurface of Constant H

Momentum refreshment 

MD

(U, pold)

(U, p)

(U �, p�)
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Hybrid Monte Carlo (HMC)
1. Refresh momenta from Gaussian Heatbath

- generate (U,p) from (U,pold)
2. Compute H = H(U,p)
3. Perform Molecular Dynamics trajectory

- generate (U’,p’)

- MD must be reversible and ‘area/measure preserving’

• To Guarantee Detailed Balance
4. Compute H’ = H(U’,p’)
5. Accept with Metropolis probability

6. If rejected new state is (U,p)

Hypersurface of Constant H

Momentum refreshment 

MD

(U, pold)

(U, p)

(U �, p�)

About 95% of time is spent in 
MD Force Calculations
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MD Forces
• Momentum Update: 

• For 2 Flavor Quark Action:   

• Need to evaluate: 

• Here again we need a solver but:
- System is manifestly Hermitian and Positive definite

- Common to use two step solve:  M†Y = ɸ  followed by M X = Y    (reduced condition number)

- M will change as we perform the MD gauge field update, long set-up times for solver may not 
be as easily amortized as for propagators. 

�
M†M

�
X = �

F = ��† �
M†M

��1
�
Ṁ†M + M†Ṁ

��
M†M

��1
�

e�� P̂ : p(� + ��)� p(�) + ��F
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State Of The Art
• Hybrid Monte Carlo Algorithm
- Determinant Splitting.

- Multiple Time-scale integration using Force-Gradient Term.

- Chronological Solution Predictors.

- Aggregation Multi-Grid Solver

• Propagator Calculations
- Aggregation Multi-Grid Solver

• Contractions/Analysis - this varies from calculation to 
calculation

- Spectroscopy:  Distillation Method

e
��
2 P̂ e

��
2 P̂

e��Q̂
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Adaptive Multigrid in LQCD
• Critical Slowing down with decreasing quark mass is caused by 

‘near zero’ modes of M

• Multi-Grid method based on Adaptive Smoothed Aggregation
- separate (project) low lying and high lying modes

- reduce error from high lying modes with “smoother”

- reduce error from low modes on coarse grid 

- Gauge field is ‘stochastic’, so no geometric smoothess on low modes => 
algebraic multigrid

- Setting up restriction/prolongation operators has a cost

- Easily amortized in Analysis with O(100,000) solves

• QCD Version thanks to SciDAC 1,2,3! 
- Collaboration between R. Falgout & J. Brannick with Boston University 

Group (R. Brower, K. Clark, R. Babich, C. Rebbi, J. Osborn and others)
Image Credit: Joanna Griffin, 
Jefferson Lab Public Affairs
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Block Aggregation
Nb.s. x Ns x Nc

Nvec

0

0

=

V
 x

 N
s x

 N
c

Nvec

Nvec

• Generate Nvec near-nullspace vectors, ‘cut’ into blocks with Nb.s. sites per block

• Aggregate over blocks: each block becomes a site in coarse grid

• Nvec becomes number of ‘colors’ on each coarse grid site

• Typically use  P = R†   and Galerkin Coarse Operator Mc = R M P

vc = R vf

Restriction via aggregation:
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Typical Implementation
• Outer Flexible Krylov Method 

- e.g. GCR, FGMRES

• MG V-cycle used as a Preconditioner.
- Null space: 

• Solve M x = 0 for Nvec random x, construct R, P

• more elaborate schemes - research topic

- Smoother: MR or Block Jacobi

- ‘Bottom Solver’:

• GCR/FGMRES

• May be deflated (e.g. FGMRES-DR, or explicitly)

• May be recursively preconditioned (e.g. by MG)

• Very large space of algorithmic combinations/
tuning possibilities: MG cycles, parameters etc.

S S

pre smooth post smooth

SS

coarse solve

R P

coarse solve

R2 P2

fine

coarse 1

coarse 2
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Benefits of Multigrid: Speed
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QUDA BiCGStab
QUDA Adaptive MG

V=643x128 sites, m
π
 ~ 200 MeV• Coarse Grids capture the troublesome 

low modes, but with massively reduced 
number of degrees of freedom.

• Typical Grid Blockings:

• Level 1: 4x4x4x4 = 256x

• Level 2: 2x2x2x2 = 16x

• Overall: 4096x reduction

• MG is a preconditioner

- reduced precision can be used 
beneficially without hurting precision of 
end result

• State of the art GPU implementation in 
QUDA Library (Clark et. al.)

• Not unreasonable x86 multicore  
implementation in mg_proto library (Joo)

from K. Clark et. al. SC’16
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Benfits of Multigrid: Optimality
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BiCGStab

V=643x128 sites, Null={24,24}, 64 nodes of Titan, m
π
~192 MeV• MG minimizes error, rather than 

residuum

• Solver is better behaved than 
BiCGStab 

• number of iterations is stable

• || error ||/|| residuum || is more stable

• Important for t-to-same-t 
propagators

- single precision is good enough 
BUT:

- want precision guarantee from 
solve to solve

from K. Clark et. al. SC’16 - sneak preview 

BiCGStab
MG
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Multigrid in the HMC 
• We focus on the MG implementation in QUDA hooked into Chroma

• Primary Targets: Titan, Summit, Blue Waters and any other big GPU based system 
we can use

• MG Subspace Management
- Keep Subspace in Chroma Named Object Store (reuse for solves with several masses)

- Still need to recompute coarse operators: this must be fast

- Subspaces lose effectiveness as fields evolve => Refresh when Iteration Threshold reached

- Keep costs of Subspace Refresh low: use fixed number of iterations (rather than residuum)

- Two new tunable parameters: Iteration Threshold & Refresh Iterations

• Numerical Experiments: 64^3x128 lattice (a~0.092fm, mpi ~ 172 MeV)
- Production Isotropic Lattice
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Multigrid Behavior

• Only the lightest 
mass really 
matters — as 
expected. And as 
shown before by 
M. Lin the 
preconditioner 
doesn’t degrade 
much for heavier 
masses
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Multigrid Tuning

• Outer MG iterations insensitive to refresh iterations once refresh iters  > 20 or so

• In terms of time, it is not immediately clear where the point is… 
- For Threshold=170 it is what I expect: there is a nice minimum (fewer iters=>worse space, more iters=> expensive)

- For Threshold=72, we refresh sufficiently often to keep a low iteration count?
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Force Gradient Integrator 
• Standard 4th order integrator following 

Omelyan requires 5 force evaluations 
per step (4MN5FV version)

• Omelyan 2nd order intergrator requires 3 
force evaluations per step

• Force gradient integrator (Clark, 
Kennedy, Silva) following H. Yin and 
Mawhinney’s exponential trick needs 3 
force evaluations + 1 auxiliary force 
gradient evaluation, but is 4th order

- Saves on solves compared to 4MN5FV 

- 4th order so volume scaling of cost is V9/8.

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8
log(dt)

-4
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 | 
dH

 | 
)

Scaling of dH with dt in a  FG Integrator (impl. by B. Yoon followin H. Yin) V=8x8x8x8, Wilson Gauge

Gradient = 4.0304
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Summit Dev Gains.

• 4.25x wallclock speedup on SummitDev

• On Titan, after all algorithmic optimizations on 512 nodes: ~974 sec per traj
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Summit Gains

• Combined Hardware x Algorithm & MD Retuning Walltime gain: 9.12x

• 8x reduction in GPUs: Integrated gain: 73x. (Contribution to 2018 ECP FOM)

• Updated: more QUDA optimizations (reduced prec chrono vecs etc.): 392.6 sec
- 10.2x walltime  x  8-fold GPU reduction => 81.6x (Contribution to 2019 ECP FOM)
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Future Work/Challenges
• Raw Performance through Multi-RHS solvers
- N-RHS at a time can in principle reap N-fold reuse of gauge field (*subject to other bottlenecks)

- Interesting MRHS algorithms out there (e.g. using auxiliary RHS, or for changing matrices)

• Scaling Challenges
- Usual MG scaling challenges (data parallel degrees of freedom get coarsened away)

- Use domain decomposed preconditioners (?)

- Multi-RHS can help with strong scaling in MG (more network friendly)

- Multi-shift solvers for rational approximations in RHMC are still a challenge

• Better MD Integrators?

• More efficient Markov-Chain Monte Carlo methods ?  (also studied in LQCD ECP)

• Performance Portability (we are OK currently, but Aurora/Frontier will be v. new)
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Current Kokkos Performance Summary
• SRHS Case:

- Kokkos Vectorized Dslash with AVX512 and tuned 
blocking matches QPhiX on Cori KNL node (68 
cores, 272 threads)

- Unvectorized & No AVX cases are slow

- Kokkos Naive CUDA version is 72% of QUDA on P100 
(SummitDev)

- Vectorized (but V=1) QUDA version benefits from 
block tuning, memory & locality optimizations and 
md_parallel_for: 79% of QUDA on P100 
(SummitDev)

• MRHS Case: 
- Kokkos With AVX512 exceeds corresp. QPhiX 

SRHS performance on Cori KNL node for 8 RHS

- Kokkos Without AVX512 is very slow

- Kokkos CUDA version is 86% of QUDA for 16 RHS 
on SummitDev (P100)
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Summary
• A variety of applied maths topics touched in LQCD

• Linear Solvers have traditionally received most focus

• Adaptive Multi-grid for Wilson Clover Fermions (developed thanks to SciDAC) 
has been a game changer for LQCD - other fermion actions in development

• Looking to the future we always need better solvers, better MD integrators and 
better Monte-Carlo methods

• A large focus with machines coming down the road is performance portability
- Encouraging early Kokkos experiences. Would like to start looking at Kokkos SIMD types, 

and potentially performance portable Batched BLAS (Kokkos Kernels?) Also looking at 
SyCL and OpenMP-5 for future architectures (ECP).

• Our SciDAC project also has components looking at Optimization and Workflow.

• Questions?
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